Alternative symplectic structures for SO (3, 1) and SO (4) four-dimensional BF theories
نویسندگان
چکیده
منابع مشابه
1/4-BPS M-theory bubbles with SO(3) × SO(4) symmetry
In this paper we generalize the work of Lin, Lunin and Maldacena on the classification of 1/2-BPS M-theory solutions to a specific class of 1/4-BPS configurations. We are interested in the solutions of 11 dimensional supergravity with SO(3) × SO(4) symmetry, and it is shown that such solutions are constructed over a one-parameter familiy of 4 dimensional almost Calabi-Yau spaces. Through analyt...
متن کاملNearly Integrable So(3) Structures on 5-dimensional Lie Groups
Recent work [5] on 5-dimensional Riemannian manifolds with an SO(3) structure prompts us to investigate which Lie groups admit such a geometry. The case in which the SO(3) structure admits a compatible connection with torsion is considered. This leads to a classification under special behaviour of the connection, which enables to recover all known examples, plus others bearing torsion of pure t...
متن کاملویژگی های هندسی فضای همگن so(n)so(n,1)
برگروه لی$ g=so_{0}(n,1) $، یک متریک ناوردای چپ تعریف می شود که از فرم کیلینگ-کارتان بدست می آید. زیرگروه فشرده همبند بیشین آن عبارت است از $ so(n)=so(n) imeslbrace 1 brace $که با$ k $ نمایش می دهیم.گروه طولپایی های$ g $ عبارت است از egin{equation*} isom_{0}(g)=g imes k, end{equation*} یعنی ضرب چپ توسط عضو های$ g $ و ضرب راست توسط عضو های $ k $. بنابراین، دو عمل برای $ k...
Integrable quadratic classical Hamiltonians on so(4) and so(3, 1)
We investigate a special class of quadratic Hamiltonians on so(4) and so(3, 1) and describe Hamiltonians that have additional polynomial integrals. One of the main results is a new integrable case with an integral of sixth degree. PACS numbers: 02.30.Hq, 02.30.Ik, 45.30.+s Mathematics Subject Classification: 34M55, 37J35, 37N15
متن کاملInvariant f-structures on the flag manifolds SO(n)/SO(2)×SO(n-3)
Invariant structures on homogeneous manifolds are of fundamental importance in differential geometry. Recall that an affinor structure F (i.e., a tensor field F of type (1,1)) on a homogeneous manifold G/H is called invariant (with respect to G) if for any g ∈ G we have dτ(g)◦F = F ◦dτ(g), where τ(g)(xH)= (gx)H . An important place among homogeneous manifolds is occupied by homogeneousΦ-spaces ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Classical and Quantum Gravity
سال: 2006
ISSN: 0264-9381,1361-6382
DOI: 10.1088/0264-9381/23/7/004